This book provides a broad introduction to computational aspects of Singular Spectrum Analysis (SSA) which is a non-parametric technique and requires no prior assumptions such as stationarity, normality or linearity of the series. This book is unique as it not only details the theoretical aspects underlying SSA, but also provides a comprehensive guide enabling the user to apply the theory in practice using the R software. Further, it provides the user with step- by- step coding and guidance for the practical application of the SSA technique to analyze their time series databases using R. The first two chapters present basic notions of univariate and multivariate SSA and their implementations in R environment. The next chapters discuss the applications of SSA to change point detection, missing-data imputation, smoothing and filtering. This book is appropriate for researchers, upper level students (masters level and beyond) and practitioners wishing to revive their knowledge of times series analysis or to quickly learn about the main mechanisms of SSA.
This comprehensive and richly illustrated volume provides up-to-date material on Singular Spectrum Analysis (SSA). SSA is a well-known methodology for the analysis and forecasting of time series. Since quite recently, SSA is also being used to analyze digital images and other objects that are not necessarily of planar or rectangular form and may contain gaps. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas, most notably those associated with time series and digital images. An effective, comfortable and accessible implementation of SSA is provided by the R-package Rssa, which is available from CRAN and reviewed in this book. Written by prominent statisticians who have extensive experience with SSA, the book (a) presents the up-to-date SSA methodology, including multidimensional extensions, in language accessible to a large circle of users, (b) combines different versions of SSA into a single tool, (c) shows the diverse tasks that SSA can be used for, (d) formally describes the main SSA methods and algorithms, and (e) provides tutorials on the Rssa package and the use of SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The book is written on a level accessible to a broad audience and includes a wealth of examples; hence it can also be used as a textbook for undergraduate and postgraduate courses on time series analysis and signal processing.
This book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas. Rapidly increasing number of novel applications of SSA is a consequence of the new fundamental research on SSA and the recent progress in computing and software engineering which made it possible to use SSA for very complicated tasks that were unthinkable twenty years ago. In this book, the methodology of SSA is concisely but at the same time comprehensively explained by two prominent statisticians with huge experience in SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The second edition of the book contains many updates and some new material including a thorough discussion on the place of SSA among other methods and new sections on multivariate and multidimensional extensions of SSA.
This original new text provides an easily accessible introduction to this important new topic in time series analysis. The authors emphasize examples over theoretical explanations and the need for proper and careful statistical tests in the context of data exploration. The book's focus is on the application of the method in signal detection, filtering, and prediction. Instructors and students will appreciate the step-by-step presentation of underlying ideas.
Recent advancements in signal processing and computerised methods are expected to underpin the future progress of biomedical research and technology, particularly in measuring and assessing signals and images from the human body. This book focuses on singular spectrum analysis (SSA), an effective approach for single channel signal analysis, and its bivariate, multivariate, tensor based, complex-valued, quaternion-valued and robust variants. SSA currently has numerous applications in detecting abnormalities in quasi-periodic biosignals, such as electrocardiograms, (ECGs or EKGs), oxygen levels, arterial pressure, and electroencephalograms (EEGs). Singular Spectrum Analysis of Biomedical Signals presents relatively newly applied concepts for biomedical applications of SSA, including: Signal source separation, extraction, decomposition, and factorization Physiological, biological, and biochemical signal processing A new SSA grouping algorithm for filtering and noise reduction of genetics data Prediction of various clinical events The book introduces a new mathematical and signal processing technique for the decomposition of widely available single channel biomedical data. It also provides illustrations of new signal processing results in the form of signals, graphs, images, and tables to reinforce understanding of the related concepts. Singular Spectrum Analysis of Biomedical Signals enhances current clinical knowledge and aids physicians in improving diagnosis, treatment and monitoring some clinical abnormalities. It also lays groundwork for progress in SSA by making suggestions for future research.
The term singular spectrum comes from the spectral (eigenvalue) decomposition of a matrix A into its set (spectrum) of eigenvalues. These eigenvalues, A, are the numbers that make the matrix A -AI singular. The term singular spectrum analysis· is unfortunate since the traditional eigenvalue decomposition involving multivariate data is also an analysis of the singular spectrum. More properly, singular spectrum analysis (SSA) should be called the analysis of time series using the singular spectrum. Spectral decomposition of matrices is fundamental to much the ory of linear algebra and it has many applications to problems in the natural and related sciences. Its widespread use as a tool for time series analysis is fairly recent, however, emerging to a large extent from applications of dynamical systems theory (sometimes called chaos theory). SSA was introduced into chaos theory by Fraedrich (1986) and Broomhead and King (l986a). Prior to this, SSA was used in biological oceanography by Colebrook (1978). In the digi tal signal processing community, the approach is also known as the Karhunen-Loeve (K-L) expansion (Pike et aI., 1984). Like other techniques based on spectral decomposition, SSA is attractive in that it holds a promise for a reduction in the dimen- • Singular spectrum analysis is sometimes called singular systems analysis or singular spectrum approach. vii viii Preface sionality. This reduction in dimensionality is often accompanied by a simpler explanation of the underlying physics.
Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small number of interpretable components such as trend, oscillatory components and noise. It is based on the singular value decomposition of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity are assumed for the time series. This makes SSA a model-free method and hence enables SSA to have a very wide range of applicability. The present book is devoted to the methodology of SSA and shows how to use SSA both safely and with maximum effect. Potential readers of the book include: professional statisticians and econometricians, specialists in any discipline in which problems of time series analysis and forecasting occur, specialists in signal processing and those needed to extract signals from noisy data, and students taking courses on applied time series analysis.
Implementation of multivariate and 2D extensions of singular spectrum analysis (SSA) by means of the R-package Rssa is considered. The extensions include MSSA for simultaneous analysis and forecasting of several time series and 2D-SSA for analysis of digital images. A new extension of 2D-SSA analysis called Shaped 2D-SSA is introduced for analysis of images of arbitrary shape, not necessary rectangular. It is shown that implementation of Shaped 2D-SSA can serve as a base for implementation of MSSA and other generalizations. Efficient implementation of operations with Hankel and Hankel-block-Hankel matrices through the fast Fourier transform is suggested. Examples with code fragments in R, which explain the methodology and demonstrate the proper use of Rssa, are presented.
With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems.
This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the needs of scientists and scholars in traditionally less quantitative disciplines, now facing increasing amounts of data.
In the modern world, data is a vital asset for any organization, regardless of industry or size. The world is built upon data. However, data without knowledge is useless. The aim of this book, briefly, is to introduce new approaches that can be used to shape and forecast the future by combining the two disciplines of Statistics and Economics.Readers of Modeling and Advanced Techniques in Modern Economics can find valuable information from a diverse group of experts on topics such as finance, econometric models, stochastic financial models and machine learning, and application of models to financial and macroeconomic data.
This book constitutes the proceedings of the 4th Conference on Creativity in Intellectual Technologies and Data Science, CIT&DS 2021, held in Volgograd, Russia, in September 2021. The 39 full papers, 7 short papers, and 2 keynote papers presented were carefully reviewed and selected from 182 submissions. The papers are organized in the following topical sections: Artificial intelligence and deep learning technologies: knowledge discovery in patent and open sources; open science semantic technologies; IoT and computer vision in knowledge-based control; Cyber-physical systems and big data-driven control: pro-active modeling in intelligent decision making support; design creativity in CASE/CAI/CAD/PDM; intelligent technologies in urban design and computing; Intelligent technologies in social engineering: data science in social networks analysis and cyber security; educational creativity and game-based learning; intelligent assistive technologies: software design and application.