Building Big Data Applications

Building Big Data Applications

Author: Krish Krishnan

Publisher: Academic Press

ISBN: 9780128158043

Category: Computers

Page: 242

View: 917

Building Big Data Applications helps data managers and their organizations make the most of unstructured data with an existing data warehouse. It provides readers with what they need to know to make sense of how Big Data fits into the world of Data Warehousing. Readers will learn about infrastructure options and integration and come away with a solid understanding on how to leverage various architectures for integration. The book includes a wide range of use cases that will help data managers visualize reference architectures in the context of specific industries (healthcare, big oil, transportation, software, etc.). Explores various ways to leverage Big Data by effectively integrating it into the data warehouse Includes real-world case studies which clearly demonstrate Big Data technologies Provides insights on how to optimize current data warehouse infrastructure and integrate newer infrastructure matching data processing workloads and requirements

Little Bites of Big Data for Public Policy

Little Bites of Big Data for Public Policy

Author: Donald F. Kettl

Publisher: CQ Press

ISBN: 9781506383514

Category: Political Science

Page: 96

View: 210

"Kettl’s easy-to-read book and various examples of big data application are required reading for seasoned academics as well as for students who work in public administration and want to contribute to real-world problem solving." –Junghack Kim, Wichita State University Little Bites of Big Data for Public Policy brings to life the quest to make better policy with better evidence. This brief book frames the big puzzles and, through lively stories and clear examples, provides a valuable how-to guide for producing analysis that works—that speaks persuasively to policy makers, in the language they can best hear, on the problems for which they most need answers. Author Donald F. Kettl brings together the cutting-edge streams of data analytics and data visualization to frame the big puzzles and find ways to make the pieces fit together. By taking little bites of a wide variety of useful data, and then by analyzing it in ways that decision makers will find most helpful, analysts can be much more effective in shaping solutions to the most important problems governments face.

The Politics and Policies of Big Data

The Politics and Policies of Big Data

Author: Ann Rudinow Sætnan

Publisher: Routledge

ISBN: 9781351866545

Category: Social Science

Page: 358

View: 270

Big Data, gathered together and re-analysed, can be used to form endless variations of our persons - so-called ‘data doubles’. Whilst never a precise portrayal of who we are, they unarguably contain glimpses of details about us that, when deployed into various routines (such as management, policing and advertising) can affect us in many ways. How are we to deal with Big Data? When is it beneficial to us? When is it harmful? How might we regulate it? Offering careful and critical analyses, this timely volume aims to broaden well-informed, unprejudiced discourse, focusing on: the tenets of Big Data, the politics of governance and regulation; and Big Data practices, performance and resistance. An interdisciplinary volume, The Politics of Big Data will appeal to undergraduate and postgraduate students, as well as postdoctoral and senior researchers interested in fields such as Technology, Politics and Surveillance.

BIG DATA ANALYTICS

BIG DATA ANALYTICS

Author: Parag Kulkarni

Publisher: PHI Learning Pvt. Ltd.

ISBN: 9788120351165

Category: Language Arts & Disciplines

Page: 208

View: 329

The book is an unstructured data mining quest, which takes the reader through different features of unstructured data mining while unfolding the practical facets of Big Data. It emphasizes more on machine learning and mining methods required for processing and decision-making. The text begins with the introduction to the subject and explores the concept of data mining methods and models along with the applications. It then goes into detail on other aspects of Big Data analytics, such as clustering, incremental learning, multi-label association and knowledge representation. The readers are also made familiar with business analytics to create value. The book finally ends with a discussion on the areas where research can be explored.

Big Data Factories

Big Data Factories

Author: Sorin Adam Matei

Publisher: Springer

ISBN: 9783319591865

Category: Computers

Page: 141

View: 970

The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as part of a broader data ecosystem, easily accessible and exploitable by parties not directly involved with data collection and documentation. Furthermore, data factoring uses and encourages pre-analytic operations that add value to big data sets, especially recombining and repurposing. The book proposes a research-development agenda that can undergird an ideal data factory approach. Several programmatic chapters discuss specialized issues involved in data factoring (documentation, meta-data specification, building flexible, yet comprehensive data ontologies, usability issues involved in collaborative tools, etc.). The book also presents case studies for data factoring and processing that can lead to building better scientific collaboration and data sharing strategies and tools. Finally, the book presents the teaching utility of data factoring and the ethical and privacy concerns related to it. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com

Analytical Skills for AI and Data Science

Analytical Skills for AI and Data Science

Author: Daniel Vaughan

Publisher:

ISBN: 9781492060918

Category: Computers

Page: 244

View: 937

While several market-leading companies have successfully transformed their business models by following data- and AI-driven paths, the vast majority have yet to reap the benefits. How can your business and analytics units gain a competitive advantage by capturing the full potential of this predictive revolution? This practical guide presents a battle-tested end-to-end method to help you translate business decisions into tractable prescriptive solutions using data and AI as fundamental inputs. Author Daniel Vaughan shows data scientists, analytics practitioners, and others interested in using AI to transform their businesses not only how to ask the right questions but also how to generate value using modern AI technologies and decision-making principles. You’ll explore several use cases common to many enterprises, complete with examples you can apply when working to solve your own issues. Break business decisions into stages that can be tackled using different skills from the analytical toolbox Identify and embrace uncertainty in decision making and protect against common human biases Customize optimal decisions to different customers using predictive and prescriptive methods and technologies Ask business questions that create high value through AI- and data-driven technologies

Big Data Analytics

Big Data Analytics

Author: Kiran Chaudhary

Publisher: CRC Press

ISBN: 9781000755787

Category: Computers

Page: 212

View: 367

Big Data Analytics: Digital Marketing and Decision-Making covers the advances related to marketing and business analytics. Investment marketing analytics can create value through proper allocation of resources and resource orchestration processes. The use of data analytics tools can be used to improve and speed decision-making processes. Chapters examining analytics for decision-making cover such topics as: Big data analytics for gathering business intelligence Data analytics and consumer behavior The role of big data analytics in organizational decision-making This book also looks at digital marketing and focuses on such areas as: The prediction of marketing by consumer analytics Web analytics for digital marketing Smart retailing Leveraging web analytics for optimizing digital marketing strategies Big Data Analytics: Digital Marketing and Decision-Making aims to help organizations increase their profits by making better decisions on time through the use of data analytics. It is written for students, practitioners, industry professionals, researchers, and faculty working in the field of commerce and marketing, big data analytics, and organizational decision-making.

Encyclopedia of Information Science and Technology, Fourth Edition

Encyclopedia of Information Science and Technology, Fourth Edition

Author: Khosrow-Pour, D.B.A., Mehdi

Publisher: IGI Global

ISBN: 9781522522560

Category: Computers

Page: 8104

View: 937

In recent years, our world has experienced a profound shift and progression in available computing and knowledge sharing innovations. These emerging advancements have developed at a rapid pace, disseminating into and affecting numerous aspects of contemporary society. This has created a pivotal need for an innovative compendium encompassing the latest trends, concepts, and issues surrounding this relevant discipline area. During the past 15 years, the Encyclopedia of Information Science and Technology has become recognized as one of the landmark sources of the latest knowledge and discoveries in this discipline. The Encyclopedia of Information Science and Technology, Fourth Edition is a 10-volume set which includes 705 original and previously unpublished research articles covering a full range of perspectives, applications, and techniques contributed by thousands of experts and researchers from around the globe. This authoritative encyclopedia is an all-encompassing, well-established reference source that is ideally designed to disseminate the most forward-thinking and diverse research findings. With critical perspectives on the impact of information science management and new technologies in modern settings, including but not limited to computer science, education, healthcare, government, engineering, business, and natural and physical sciences, it is a pivotal and relevant source of knowledge that will benefit every professional within the field of information science and technology and is an invaluable addition to every academic and corporate library.

Big Data-Enabled Nursing

Big Data-Enabled Nursing

Author: Connie W. Delaney

Publisher: Springer

ISBN: 9783319533001

Category: Medical

Page: 488

View: 534

Historically, nursing, in all of its missions of research/scholarship, education and practice, has not had access to large patient databases. Nursing consequently adopted qualitative methodologies with small sample sizes, clinical trials and lab research. Historically, large data methods were limited to traditional biostatical analyses. In the United States, large payer data has been amassed and structures/organizations have been created to welcome scientists to explore these large data to advance knowledge discovery. Health systems electronic health records (EHRs) have now matured to generate massive databases with longitudinal trending. This text reflects how the learning health system infrastructure is maturing, and being advanced by health information exchanges (HIEs) with multiple organizations blending their data, or enabling distributed computing. It educates the readers on the evolution of knowledge discovery methods that span qualitative as well as quantitative data mining, including the expanse of data visualization capacities, are enabling sophisticated discovery. New opportunities for nursing and call for new skills in research methodologies are being further enabled by new partnerships spanning all sectors.

Emerging Technologies in Data Mining and Information Security

Emerging Technologies in Data Mining and Information Security

Author: Ajith Abraham

Publisher: Springer

ISBN: 9789811314988

Category: Technology & Engineering

Page: 885

View: 562

The book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2018) held at the University of Engineering & Management, Kolkata, India, on February 23–25, 2018. It comprises high-quality research by academics and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers, case studies related to all the areas of data mining, machine learning, IoT and information security.

Big Data Imperatives

Big Data Imperatives

Author: Soumendra Mohanty

Publisher: Apress

ISBN: 9781430248729

Category: Computers

Page: 296

View: 774

Big Data Imperatives, focuses on resolving the key questions on everyone's mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications? Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use. Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible. This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this book intends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data.

Big Data Now: Current Perspectives from O'Reilly Radar

Big Data Now: Current Perspectives from O'Reilly Radar

Author: O'Reilly Radar Team

Publisher: "O'Reilly Media, Inc."

ISBN: 9781449315214

Category: Computers

Page: 124

View: 888

This collection represents the full spectrum of data-related content we’ve published on O’Reilly Radar over the last year. Mike Loukides kicked things off in June 2010 with “What is data science?” and from there we’ve pursued the various threads and themes that naturally emerged. Now, roughly a year later, we can look back over all we’ve covered and identify a number of core data areas: Data issues -- The opportunities and ambiguities of the data space are evident in discussions around privacy, the implications of data-centric industries, and the debate about the phrase “data science” itself. The application of data: products and processes – A “data product” can emerge from virtually any domain, including everything from data startups to established enterprises to media/journalism to education and research. Data science and data tools -- The tools and technologies that drive data science are of course essential to this space, but the varied techniques being applied are also key to understanding the big data arena. The business of data – Take a closer look at the actions connected to data -- the finding, organizing, and analyzing that provide organizations of all sizes with the information they need to compete.