New discoveries in the field of stem cells increasingly dominate the news and scientific literature revealing an avalanche of new knowledge and research tools that are producing therapies for cancer, heart disease, diabetes, and a wide variety of other diseases that afflict humanity. The Handbook of Stem Cells integrates this exciting area of life science, combining in two volumes the requisites for a general understanding of adult and embryonic stem cells. Organized in two volumes entitled Pluripotent Stem Cells & Cell Biology and Adult & Fetal Stem Cells, this work contains contributions from the world's experts in stem cell research to provide a description of the tools, methods, and experimental protocols needed to study and characterize stem cells and progenitor populations as well as a the latest information of what is known about each specific organ system.
New discoveries in the field of stem cells increasingly dominate the news and scientific literature revealing an avalanche of new knowledge and research tools that are producing therapies for cancer, heart disease, diabetes, and a wide variety of other diseases that afflict humanity. The Handbook of Stem Cells integrates this exciting area of life science, combining in two volumes the requisites for a general understanding of adult and embryonic stem cells. Organized in two volumes entitled Pluripotent Stem Cells and Cell Biology and Adult and Fetal Stem Cells, this work contains contributions from the world’s experts in stem cell research to provide a description of the tools, methods, and experimental protocols needed to study and characterize stem cells and progenitor populations as well as a the latest information of what is known about each specific organ system. Provides comprehensive coverage on this highly topical subject Contains contributions by the foremost authorities and premiere names in the field of stem cell research Companion website - http://booksite.elsevier.com/9780123859426/ - contains over 250 color figures in presentation format
This is a complete overview of the field of stem cells, providing the background, tools, methods and experimental protocols needed for further research.
The power of stem cells for tissue development, regeneration, and renewal has been well known by embryologists and developmental biologists for many years. Those presently active in research in the stem cell field owe much to previous work by embryologists and cancer researchers for their insights into what stem cells can do. In the last 4- 5 years, the rapid expansion of the concept of adult tissue stem cells as pluripotent progenitors for various tissues has led to an even greater appreciation of the power of stem cells. The demonstration that both embryonic and adult tissue stem cells have the ability to produce progenitor cells for tissue renewal has opened vast possibilities for treatment of congenital deficiency diseases as well as for regeneration of damaged tissues. Older concepts of determination leading to loss of potential during differentiation of adult tissues are being replaced by newer ideas that cells with multiple potential exist in different forms in various adult organs and that cells thought to be restricted to differentiation to one cell type may be able to "transdifferentiate" into other tissue cell types. Thus, the concept of "embryonic rests" in adult tissues, hypothesized to be the cellular origin of cancer by Durante and Conheim in the 1870s, now can be expanded to include survival of pluripotential embryonic-like stem cells in adult tissues.
This book combines the prerequisites for a general understanding of adult and embryonic stem cells with a presentation of the latest research information about specific organ systems. It covers a wide range of topics, including basic biology/mechanisms, early development, ectoderm, mesoderm, endoderm, and methods to the application of stem cells to specific human diseases, regulation and ethics, and patient perspectives.
This is a reference handbook for young researchers exploring gene and cell therapy. Gene therapy could be defined as a set of strategies modifying gene expression or correcting mutant/defective genes through the administration of DNA (or RNA) to cells, in order to treat disease. Important advances like the discovery of RNA interference, the completion of the Human Genome project or the development of induced pluripotent stem cells (iPSc) and the basics of gene therapy are covered. This is a great book for students, teachers, biomedical researchers delving into gene/cell therapy or researchers borrowing skills from this scientific field.
Considerable advances have taken place since the initial isolation and characterization of human embryonic stem (HES) cells; however, significant challenges remain before their potential for restoration and regeneration processes in patients can be realized. Understanding the diversity amongst HES cell lines and realizing the ability to isolate lines with robust differentiation potential remain difficult. In the Human Embryonic Stem Cells Handbook, experts in the field provide an assortment of protocols that have been used by various laboratories around the world so as to allow both novices and experienced investigators to compare and contrast different approaches to HES cell isolation and characterization with the hope that, from these protocols, researchers might standardize approaches for HES cell biology. Written in the Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips for troubleshooting and avoiding known pitfalls. Authoritative and accessible, Human Embryonic Stem Cells Handbook serves as a valuable reference for scientists pursuing this vital field and its enormous potential.