Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System

Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System

Author: Zhongmin Jin

Publisher: Woodhead Publishing

ISBN: 9780128227626

Category: Technology & Engineering

Page: 632

View: 729

Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, Second Edition reviews how a wide range of materials are modeled and applied. Chapters cover basic concepts for modeling of biomechanics and biotribology, the fundamentals of computational modeling of biomechanics in the musculoskeletal system, finite element modeling in the musculoskeletal system, computational modeling from a cells and tissues perspective, and computational modeling of the biomechanics and biotribology interactions, looking at complex joint structures. This book is a comprehensive resource for professionals in the biomedical market, materials scientists and biomechanical engineers, and academics in related fields. This important new edition provides an up-to-date overview of the most recent research and developments involving hydroxyapatite as a key material in medicine and its application, including new content on novel technologies, biomorphic hydroxyapatite and more. Provides detailed, introductory coverage of modeling of cells and tissues, modeling of biomaterials and interfaces, biomechanics and biotribology Discusses applications of modeling for joint replacements and applications of computational modeling in tissue engineering Offers a holistic perspective, from cells and small ligaments to complex joint interactions

Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System

Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System

Author: Z Jin

Publisher:

ISBN: OCLC:1112552901

Category:

Page: 550

View: 313

Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System reviews how a wide range of materials are modelled and how this modelling is applied. Computational modelling is increasingly important in the design and manufacture of biomedical materials, as it makes it possible to predict certain implant-tissue reactions, degradation, and wear, and allows more accurate tailoring of materials' properties for the in vivo environment. Part I introduces generic modelling of biomechanics and biotribology with a chapter on the fundamentals of computational modelling of biomechanics in the musculoskeletal system, and a further chapter on finite element modelling in the musculoskeletal system. Chapters in Part II focus on computational modelling of musculoskeletal cells and tissues, including cell mechanics, soft tissues and ligaments, muscle biomechanics, articular cartilage, bone and bone remodelling, and fracture processes in bones. Part III highlights computational modelling of orthopedic biomaterials and interfaces, including fatigue of bone cement, fracture processes in orthopedic implants, and cementless cup fixation in total hip arthroplasty (THA). Finally, chapters in Part IV discuss applications of computational modelling for joint replacements and tissue scaffolds, specifically hip implants, knee implants, and spinal implants; and computer aided design and finite element modelling of bone tissue scaffolds. This book is a comprehensive resource for professionals in the biomedical market, materials scientists and mechanical engineers, and those in academia. Covers generic modelling of cells and tissues; modelling of biomaterials and interfaces; biomechanics and biotribology Discusses applications of modelling for joint replacements and applications of computational modelling in tissue engineering.

Human Orthopaedic Biomechanics

Human Orthopaedic Biomechanics

Author: Bernardo Innocenti

Publisher: Academic Press

ISBN: 9780128244821

Category: Technology & Engineering

Page: 758

View: 344

Human Orthopaedic Biomechanics: Fundamentals, Devices and Applications covers a wide range of biomechanical topics and fields, ranging from theoretical issues, mechanobiology, design of implants, joint biomechanics, regulatory issues and practical applications. The book teaches the fundamentals of physiological loading and constraint conditions at various parts of the musculoskeletal system. It is an ideal resource for teaching and education in courses on orthopedic biomechanics, and for engineering students engaged in these courses. In addition, all bioengineers who have an interest in orthopedic biomechanics will find this title useful as a reference, particularly early career researchers and industry professionals. Finally, any orthopedic surgeons looking to deepen their knowledge of biomechanical aspects will benefit from the accessible writing style in this title. Covers theoretical aspects (mechanics, stress analysis, constitutive laws for the various musculoskeletal tissues and mechanobiology) Presents components of different regulatory aspects, failure analysis, post-marketing and clinical trials Includes state-of-the-art methods used in orthopedic biomechanics and in designing orthopedic implants (experimental methods, finite element and rigid-body models, gait and fluoroscopic analysis, radiological measurements)

Digital Human Modeling and Medicine

Digital Human Modeling and Medicine

Author: Gunther Paul

Publisher: Academic Press

ISBN: 9780128242186

Category: Technology & Engineering

Page: 926

View: 372

Digital Human Modeling and Medicine: The Digital Twin explores the body of knowledge and state-of-the-art in Digital Human Modeling (DHM) and its applications in medicine. DHM is the science of representing humans with their physical properties, characteristics and behaviors in computerized, virtual models. These models can be used standalone or integrated with other computerized object design systems to both design or study designs of medical devices or medical device products and their relationship with humans. They serve as fast and cost-efficient computer-based tools for the assessment of human functional systems and human-system interaction. This book provides an industry first introductory and practitioner focused overview of human simulation tools, with detailed chapters describing body functional elements and organs, organ interactions and fields of application. Thus, DHM tools and a specific scientific/practical problem – functional study of the human body – are linked in a coherent framework. Eventually the book shows how DHM interfaces with common physical devices in medical practice, answering to a gap in literature and a common practitioner question. Case studies provide the applied knowledge for practitioners to make informed decisions. A non-specialist level, up-to-date overview and introduction to all medically relevant DHM systems to inform trialing, procurement decisions and initial application Includes user-level examples and case studies of DHM applications in various medical fields Clearly structured and focused compendium that is easy to access, read and understand

Bioinspired Legged Locomotion

Bioinspired Legged Locomotion

Author: Maziar Ahmad Sharbafi

Publisher: Butterworth-Heinemann

ISBN: 9780128037744

Category: Technology & Engineering

Page: 638

View: 413

Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. Presents state-of-the-art control approaches with biological relevance Provides a thorough understanding of the principles of organization of biological locomotion Teaches the organization of complex systems based on low-dimensional motion concepts/control Acts as a guideline reference for future robots/assistive devices with legged architecture Includes a selective bibliography on the most relevant published articles

Modeling of Microscale Transport in Biological Processes

Modeling of Microscale Transport in Biological Processes

Author: Sid Becker

Publisher: Academic Press

ISBN: 9780128046197

Category: Science

Page: 394

View: 817

Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels. Features recent developments in theoretical and computational modeling for clinical researchers and engineers Furthers researcher understanding of fluid flow in biological media and focuses on biofluidics at the microscale Includes chapters expertly authored by internationally recognized authorities in the fundamental and applied fields that are associated with microscale transport in living media

Contact Mechanics of Articular Cartilage Layers

Contact Mechanics of Articular Cartilage Layers

Author: Ivan Argatov

Publisher: Springer

ISBN: 9783319200835

Category: Science

Page: 335

View: 801

This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers and Chapter 9, which addresses various perturbational aspects in contact problems and introduces the sensitivity of articular contact mechanics. This book is intended for advanced undergraduate and graduate students, researchers in the area of biomechanics, and engineers interested and involved in the analysis and design of thin-layer structures.

Experimental and Numerical Investigations in Materials Science and Engineering

Experimental and Numerical Investigations in Materials Science and Engineering

Author: Nenad Mitrovic

Publisher: Springer

ISBN: 9783319996202

Category: Technology & Engineering

Page: 232

View: 261

This book provides a collection of high-quality peer-reviewed research papers presented at the International Conference of Experimental and Numerical Investigations and New Technologies (CNNTech2018), held in Zlatibor, Serbia from 4 to 6 July 2018. The book discusses a wide variety of industrial, engineering and scientific applications of engineering techniques. Researchers from academia and the industry share their original work and exchange ideas, experiences, information, techniques, applications and innovations in the field of mechanical engineering, materials science, chemical and process engineering, experimental techniques, numerical methods and new technologies.

Advances in Bionanomaterials

Advances in Bionanomaterials

Author: Stefano Piotto

Publisher: Springer

ISBN: 9783319620275

Category: Technology & Engineering

Page: 178

View: 835

This book reports on multidisciplinary research focusing on the analysis, synthesis and design of bionanomaterials. It merges the biophysicists’, the biochemists’ and bioengineers’ perspectives, covering the study of the basic properties of materials and their interaction with biological systems, the development of new devices for medical purposes such as implantable systems, and new algorithms and methods for modeling the mechanical, physical or biological properties of biomaterials. The different chapters, which are based on selected contributions presented at the second edition of BIONAM, held on October 4-7, 2016, in Salerno, Italy, cover both basic and applied research. This includes novel synthetic strategies for nanomaterials, as well as the implementation of bio- and smart materials for pharmacological and medical purposes (e.g. drug delivery, implantable systems), environmental applications, and many others. The book provides a broad audience of academic and professionals with a comprehensive, timely snapshot of the field of biomaterials. Besides offering a set of innovative theories together with the necessary practical tools for their implementation, it also highlights current challenges in the field, thus fostering new discussions and possible future collaborations between groups with different backgrounds.