A Concrete Approach to Abstract Algebra presents a solid and highly accessible introduction to abstract algebra by providing details on the building blocks of abstract algebra. It begins with a concrete and thorough examination of familiar objects such as integers, rational numbers, real numbers, complex numbers, complex conjugation, and polynomials. The author then builds upon these familiar objects and uses them to introduce and motivate advanced concepts in algebra in a manner that is easier to understand for most students. Exercises provide a balanced blend of difficulty levels, while the quantity allows the instructor a latitude of choices. The final four chapters present the more theoretical material needed for graduate study. This text will be of particular interest to teachers and future teachers as it links abstract algebra to many topics which arise in courses in algebra, geometry, trigonometry, precalculus, and calculus. Presents a more natural 'rings first' approach to effectively leading the student into the the abstract material of the course by the use of motivating concepts from previous math courses to guide the discussion of abstract algebra Bridges the gap for students by showing how most of the concepts within an abstract algebra course are actually tools used to solve difficult, but well-known problems Builds on relatively familiar material (Integers, polynomials) and moves onto more abstract topics, while providing a historical approach of introducing groups first as automorphisms Exercises provide a balanced blend of difficulty levels, while the quantity allows the instructor a latitude of choices

A completely reworked new edition of this superb textbook. This key work is geared to the needs of the graduate student. It covers, with proofs, the usual major branches of groups, rings, fields, and modules. Its inclusive approach means that all of the necessary areas are explored, while the level of detail is ideal for the intended readership. The text tries to promote the conceptual understanding of algebra as a whole, doing so with a masterful grasp of methodology. Despite the abstract subject matter, the author includes a careful selection of important examples, together with a detailed elaboration of the more sophisticated, abstract theories.

This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader's skill and progress. The book should be suitable for students in the third or fourth year of study at a North American university or in the second or third year at a university in Europe, and should ease the transition to (post)graduate studies.

Presents a systematic approach to one of math's most intimidating concepts. Avoiding the pitfalls common in the standard textbooks, this title begins with familiar topics such as rings, numbers, and groups before introducing more difficult concepts.

Through this book, upper undergraduate mathematics majors will master a challenging yet rewarding subject, and approach advanced studies in algebra, number theory and geometry with confidence. Groups, rings and fields are covered in depth with a strong emphasis on irreducible polynomials, a fresh approach to modules and linear algebra, a fresh take on Gröbner theory, and a group theoretic treatment of Rejewski's deciphering of the Enigma machine. It includes a detailed treatment of the basics on finite groups, including Sylow theory and the structure of finite abelian groups. Galois theory and its applications to polynomial equations and geometric constructions are treated in depth. Those interested in computations will appreciate the novel treatment of division algorithms. This rigorous text 'gets to the point', focusing on concisely demonstrating the concept at hand, taking a 'definitions first, examples next' approach. Exercises reinforce the main ideas of the text and encourage students' creativity.

Suitable for second to fourth year undergraduates, this title contains several applications: Polya-Burnside Enumeration, Mutually Orthogonal Latin Squares, Error-Correcting Codes and a classification of the finite groups of isometries of the plane and the finite rotation groups in Euclidean 3-space.

This book explores the history of abstract algebra. It shows how abstract algebra has arisen in attempting to solve some of these classical problems, providing a context from which the reader may gain a deeper appreciation of the mathematics involved.

Accessible to junior and senior undergraduate students, this survey contains many examples, solved exercises, sets of problems, and parts of abstract algebra of use in many other areas of discrete mathematics. Although this is a mathematics book, the authors have made great efforts to address the needs of users employing the techniques discussed. Fully worked out computational examples are backed by more than 500 exercises throughout the 40 sections. This new edition includes a new chapter on cryptology, and an enlarged chapter on applications of groups, while an extensive chapter has been added to survey other applications not included in the first edition. The book assumes knowledge of the material covered in a course on linear algebra and, preferably, a first course in (abstract) algebra covering the basics of groups, rings, and fields.

This book on Abstract Algebra is intended for one or two semesters of B.Sc. (Hons.) and B.A. (Prog.) of University of Delhi and other Universities of India. The book is written in simple language to make the students understand various topics in Abstract Algebra in an easier way. The examples and exercises of the book are meticulously crafted and honed to meet the need of the students who are keen to know about Abstract Algebra. Starting from Set Theory and covering the topics on Groups, Rings and Vector Spaces, the book provides the students a deep study of Abstract Algebra. The book ‘Abstract Algebra’ combines the theory, examples with exercises on the concepts related to the topics in Abstract Algebra.

A comprehensive presentation of abstract algebra and an in-depth treatment of the applications of algebraic techniques and the relationship of algebra to other disciplines, such as number theory, combinatorics, geometry, topology, differential equations, and Markov chains.

Discovering Abstract Algebra takes an Inquiry-Based Learning approach to the subject, leading students to discover for themselves its main themes and techniques. Concepts are introduced conversationally through extensive examples and student investigation before being formally defined. Students will develop skills in carefully making statements and writing proofs, while they simultaneously build a sense of ownership over the ideas and results. The book has been extensively tested and reinforced at points of common student misunderstanding or confusion, and includes a wealth of exercises at a variety of levels. The contents were deliberately organized to follow the recommendations of the MAA's 2015 Curriculum Guide. The book is ideal for a one- or two-semester course in abstract algebra, and will prepare students well for graduate-level study in algebra.